

CBTV4010
 10-bit DDR SDRAM mux/bus switch

Product data
File under Integrated Circuits - ICL03

FEATURES

- Enable signal is SSTL_2 compatible
- Optimized for use in Double Data Rate (DDR) SDRAM applications
- Designed to be used with $400 \mathrm{Mbps} / 200 \mathrm{MHz}$ DDR data bus
- Switch on resistance is designed to eliminate the need for series resistor to DDR SDRAM
- 20Ω on resistance
- Internal 100Ω pull-down resistors
- Low differential skew
- Matched rise/fall slew rate
- Low cross-talk data-data/data-DQM
- Independent DIMM control lines
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101

DESCRIPTION

This 10 -bit bus switch is designed for 2.3 V to $2.7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operation and SSTL_2 select input levels.

Each Host port pin is multiplexed to one of four DIMM port pins. When the S pin is low the corresponding 10 -bit bus switch is turned on. The on-state connects the Host port to the DIMM port through a 20Ω nominal series resistance. When the S pin is high the switch is open and a high-impedance state exists between the two ports. The DIMM port is terminated with a 100Ω resistor to ground when the S pin is high. The design is intended to have only one DIMM port active at any time.

The part incorporates a very low cross-talk design. It has a very low skew between outputs ($<50 \mathrm{ps}$) and low skew ($<50 \mathrm{ps}$) for rising and falling edges. The part has optional performance in DDR data bus applications.
Each switch has been optimized for connection to 1 or 2-bank DIMMs.

The low internal RC time constant of the switch ($20 \Omega \times 7 \mathrm{pF}$) allows data transfer to be made with minimal propagation delay.
The CBTV4010 is characterized for operation from 0 to $+85^{\circ} \mathrm{C}$.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathbf{T}_{\text {amb }}=\mathbf{2 5}{ }^{\circ} \mathbf{C} ; \mathbf{G N D}=\mathbf{0} \mathbf{~ V}$	TYPICAL	UNIT
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\text {PHL }}$	Propagation delay An to Yn	$\mathrm{C}_{\mathrm{L}}=7 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	140	ps
C_{IN}	Input capacitance - control pins	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	1.8	pF
C_{ON}	Channel on capacitance	$\mathrm{V}_{\mathrm{in}}=1.5 \mathrm{~V}$	7	pF
$\mathrm{I}_{\mathrm{CCZ}}$	Total supply current	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	500	$\mu \mathrm{~A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
TFBGA64 (Thin Fine Pitch BGA)	0 to $+85^{\circ} \mathrm{C}$	CBTV4010EE	SOT746-1

64-BALL BGA CONFIGURATION

	1	2	3	4	5	6	7	8	9	10	11	
A	V_{DD}	ST	NC		1DP0	2DP0	3DP0		2DP1	3DP1	0DP2	
B	S2	$V_{D D}$	So	GND	ODP0	HPO	0DP1	1DP1	HP1	GND	1DP2	
c	NC	S3								HP2	2DP2	
D		GND								3DP2		
E	2DP9	3DP9								ODP3	1DP3	
F	1DP9	HP9								HP3	2DP3	
G	0DP9	3DP8								GND	3DP3	
H		2DP8								ODP4		
J	1DP8	HP8								HP4	1DP4	
K	0DP8	GND	HP7	0DP7	3DP6	HP6	GND	3DP5	HP5	3DP4	2DP4	
L	3DP7	2DP7	1DP7		2DP6	1DP6	0DP6		2DP5	1DP5	0DP5	
NOTE: BLANK SPACE INDICATES NO BALL												SA00589

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
B6, B9, C10, F2, F10, J2, J10, K3, K6, K9	HP0-HP9	Host ports
A2, B1, B3, C2	S0-S3	Select
A5, A6, A7, A9,	0DP0-3DP3	DIMM ports
A10, A11, B5, B7,	0DP1-3DP1	
B8, B11, C11, D10,	0DP2-3DP2	
E1, E2, E10, E11,	0DP3-3DP3	
F1, F11, G1, G2,	0DP4-3DP4	
G11, H2, H10, J1,	0DP5-3DP5	
J11, K1, K4, K5,	0DP6-3DP6	
K8, K10, K11, L1,	0DP7-3DP7	
L2, L3, L5, L6, L7,	0DP8-3DP8	
L9, L10, L11	0DP9-3DP9	
B10, D2, G10, K2,	GND	Ground
K7,		
A1, B2	VDD	Positive supply voltage

FUNCTION TABLE

INPUT	FUNCTION
$\overline{\mathbf{S}}$	
L	Host port $=$ DIMM port
H	Host port = Disconnect
DIMM port $=100 \Omega$ to GND	

[^0]
SIMPLIFIED SCHEMATIC, EACH FET SWITCH

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS ${ }^{1,3}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +3.3	V
I_{IK}	DC input clamp current	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage range $(\overline{\mathrm{S}} \text { pin only })^{2}$		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~T}_{\mathrm{stg}}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$	
V_{I}	DC input voltage range $(\text { except } \overline{\mathrm{S}} \text { pin) })^{2}$		-0.5 to 3.3	V

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. The package thermal impedance is calculated in accordance with JESD 51.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	DC supply voltage	2.3	2.5	2.7	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage DIMM port and Host	1.6	-	-	V
V_{IL}	Low-level Input voltage DIMM port and Host	-	-	0.9	V
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0	-	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS			LIMITS		UNIT
				$\mathrm{T}_{\mathrm{amb}}=0$ to $+85^{\circ} \mathrm{C}$			
				Min	Typ ${ }^{1}$	Max	
V_{IK}	Input clamp voltage	$\mathrm{V}_{C C}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-	-	-1.2	V
1	Input leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{S}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\overline{\text { s }}$	-	-	± 100	$\mu \mathrm{A}$
			Host port	-	-	± 100	
		$\overline{\mathrm{S}}=\mathrm{GND}$ for IIL (test)	DIMM port	-	-	± 100	
I_{CC}	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		-	0.7	1.5	mA
$\mathrm{C}_{\text {in }}$	Control pin capacitance	$\mathrm{V}_{\mathrm{l}}=2.5 \mathrm{~V}$ or 0		-	1.8	3	pF
Con	Switch on capacitance	$\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}$		-	-	10	pF
ron^{2}	On-resistance	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}}=0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{B}}=1.0 \mathrm{~V}$		16	20	30	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}}=1.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{B}}=1.5 \mathrm{~V}$		16	20	30	

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
2. Measured by the current between the Host and the DIMM terminals at the indicated voltages on each side of the switch.
3. Capacitance values are measured at a of 10 MHz and a bias voltage 3 V . Capacitance is not production tested.

AC CHARACTERISTICS

SYMBOL	PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$			UNIT
				Min	Typ	Max	
t_{pd}	Propagation delay ${ }^{1}$	HPx or xDPx	xDPx or HPx	-	-	140	ps
ten	enable	\bar{S}_{n}	HPx or nDPx	1	-	2	ns
$\mathrm{t}_{\text {dis }}$	disable	\bar{S}_{n}	HPx or nDPx	1	-	3	ns
$\mathrm{t}_{\text {osk }}$	Output skew Any output to any output, Waveform 4 (see note 2)			-	25	50	ps
$t_{\text {esk }}$	Edge skew Difference of rising edge propagation delay to falling edge propagation delay, Waveform 5 (see note 2)			-	25	50	ps

NOTES:

1. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance, when driven by an ideal voltage source (zero output impedance); $20 \Omega \times 7 \mathrm{pF}$.
This parameter is not production tested.
2. Skew is not production tested.

HPx to nDPx AC WAVEFORMS AND TEST CIRCUIT

AC WAVEFORMS

Waveform 1. Input (D or H) to Output (H or D) Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT HPx to xDPx

NOTES:

1. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
2. The outputs are measured one at a time with one transition per measurement.

nDPx to HPx AC WAVEFORMS AND TEST CIRCUIT

AC WAVEFORM

Waveform 3. 3-State Output Enable and Disable Times

TEST CIRCUIT nDPx to HPx

DEFINITIONS
$C_{L}=$ Load capacitance includes jig and probe capacitance

SA00624

NOTES:

1. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$
2. The outputs are measured one at a time with one transition per measurement.

Waveform 4. Skew Between Any Two Outputs

Waveform 5. Rising and Falling Edge Skew

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1.2	0.3	0.9	0.35	7.1	7.1	0.5	5	5	0.15	0.05	0.08	0.1

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT746-1	---	MO-195	---	\square	02-01-11

NOTES

Data sheet status

Data sheet status ${ }^{[1]}$	Product status ${ }^{[2]}$	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 402724825
© Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

[^0]: $\mathrm{H}=$ High voltage level
 $L=$ Low voltage level

